Connect with us

Ilmu

NASA merencanakan dua misi ke Venus pada 2030

Published

on

NottinghamSelama beberapa dekade, eksplorasi tata surya kita telah meninggalkan salah satu planet tetangga kita, Venus, sebagian besar belum dijelajahi. Sekarang, segalanya akan berubah.

Dalam pengumuman terbaru dari Program Eksplorasi Tata Surya NASA, dua misi telah diberi lampu hijau – keduanya menuju Venus. Dua misi ambisius tersebut akan diluncurkan antara tahun 2028 dan 2030.

Ini adalah perubahan besar dalam arah Divisi Ilmu Planet NASA, yang tidak mengirim misi ke planet ini sejak tahun 1990. Ini adalah berita yang menggembirakan bagi para astronom seperti saya.

Venus adalah dunia yang bermusuhan. Atmosfer mengandung asam sulfat dan suhu permukaan cukup panas untuk melelehkan timah. Tapi tidak selalu seperti ini. Diyakini bahwa Venus mulai sangat mirip dengan Bumi. jadi apa yang terjadi?

Sementara karbon di Bumi, sebagian besar terperangkap di bebatuan, dan di Venus ia lolos ke atmosfer – membentuk sekitar 96 persen karbon dioksida. Hal ini mengakibatkan fenomena pemanasan global yang tidak terkendali, yang meningkatkan suhu permukaan hingga 750 K (470 °C atau 900 °F).

Sejarah planet ini menjadikannya tempat yang sangat baik untuk mempelajari efek pemanasan global dan mempelajari cara mengelolanya di Bumi. Kita dapat menggunakan model yang menggambarkan ekstrem atmosfer Venus dan membandingkan hasilnya dengan apa yang kita lihat di rumah.

Tapi kondisi permukaan yang keras adalah salah satu alasan misi eksplorasi planet menghindari Venus. Suhu tinggi berarti tekanan yang sangat tinggi sebesar 90 bar (setara dengan sekitar satu kilometer di bawah air) yang cukup untuk secara instan menghancurkan sebagian besar pendarat di planet ini.

Maka, mungkin tidak mengherankan bahwa misi ke Venus tidak selalu direncanakan. Sebagian besar eksplorasi hingga saat ini dilakukan oleh Uni Soviet antara tahun 1960-an dan 1980-an. Ada pengecualian, seperti misi Pioneer Venus NASA pada tahun 1972 dan misi Venus Express Badan Antariksa Eropa pada tahun 2006.

READ  Keren, Lubang Hitam Ini Membuat Cincin Sinar-X Besar

Pendaratan pertama terjadi pada tahun 1970, ketika pesawat Soviet Venera 7 jatuh karena parasut yang meleleh. Tetapi ia mampu mengirim 20 menit data kembali ke Bumi. Gambar permukaan pertama diambil oleh Venera 9, diikuti oleh Veneras 10, 13 dan 14.

Continue Reading
Click to comment

Leave a Reply

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

Ilmu

Ilmuwan Telah Menemukan Bagian Yang Hilang Dari Materi Alam Semesta – Semua Halaman

Published

on

NASA

Sebuah studi baru telah menemukan bahwa bagian partikel yang sulit ditemukan kemungkinan besar tersebar di batas jauh galaksi halo. Gambar berwarna ini menunjukkan halo galaksi Andromeda.

Nationalgeographic.co.id—Galaksi dapat menerima dan bertukar materi dengan lingkungan luarnya berkat angin galaksi diciptakan oleh ledakan bintang. Sebuah tim peneliti internasional kini telah memetakan angin galaksi ini untuk pertama kalinya. Pengamatan unik ini membantu mengungkap di mana beberapa materi alam semesta yang hilang dan mengamati pembentukannya nebula di sekitar galaksi.

Galaksi dapat disamakan dengan pulau-pulau bintang di alam semesta. Ia memiliki materi biasa atau baryon, yang terdiri dari unsur-unsur pada tabel periodik, serta materi gelap, yang komposisinya masih belum diketahui.

Namun, salah satu masalah penting yang dihadapi para ilmuwan ketika mencoba memahami proses pembentukan galaksi adalah bahwa sekitar 80 persen baryon yang menyusun materi biasa alam semesta tidak ditemukan, atau memang tidak ada. Banyak model galaksi menunjukkan bahwa baryon ini telah dikeluarkan dari dalam galaksi ke ruang antargalaksi oleh angin galaksi diciptakan oleh ledakan bintang.

Sebuah tim internasional, dipimpin di pihak Prancis oleh para peneliti dari CNRS dan Universitas Claude Bernard Lyon 1, berhasil menggunakan instrumen MUSE (Penjelajah Spektroskopi Multi Unit) dari Teleskop Sangat Besar di ESO untuk pertama kalinya menghasilkan peta terperinci dari pertukaran aktuator angin galaksi antara galaksi muda dalam formasi dan nebula (awan antarbintang dari gas dan debu).

“Penelitian kami baru-baru ini berfokus pada pengamatan pembatasan aliran gas dalam medium sirkumgalaksi (CGM) di sekitar galaksi yang jauh. Saya mencoba mengukur bagaimana gas (dingin) bertambah dari CGM ke galaksi dan dikeluarkan dari galaksi ke CGM,” kata Johannes Zabl, astronom observasional yang ikut menulis studi tersebut.

READ  Ilmuwan Mendeteksi Potensi Kehidupan di Luar Planet Bumi: Okezone techno

Tim peneliti dalam penelitian ini memilih untuk mengamati galaksi Gal1 karena kedekatannya dengan quasar, yang berfungsi sebagai “suar” bagi para ilmuwan dengan membimbing mereka menuju area penelitian. Mereka juga berencana untuk mengamati nebula di sekitar galaksi ini, meskipun keberhasilan pengamatan ini pada awalnya tidak pasti, karena luminositasnya nebula tidak diketahui.

Pengamatan bagian dari Semesta berkat MUSE.  Kiri: Demarkasi quasar dan galaksi dipelajari di sini, Gal1.  Tengah: Nebula yang terbuat dari magnesium diwakili oleh skala ukuran.  Kanan: superimposisi nebula dan galaksi Gal1.

Johannes Zabl

Pengamatan bagian dari Semesta berkat MUSE. Kiri: Demarkasi quasar dan galaksi dipelajari di sini, Gal1. Tengah: Nebula yang terbuat dari magnesium diwakili oleh skala ukuran. Kanan: superimposisi nebula dan galaksi Gal1.


“Untuk tujuan ini, kami secara kinematis mengkorelasikan penyerapan CGM yang kami temukan di quasar latar belakang dengan kinematika galaksi di mana lingkaran cahaya gas CGM berada. Data untuk pekerjaan ini berasal dari survei MEGAFLOW.” Zabl mengatakan, dikutip dari situs pribadinya, Mengamati Alam Semesta.

MEGAFLOW (MusE GAs FLOw and Wind), adalah bagian proyek dari kolaborasi MUSE GTO, yang mempelajari kinematika struktur gas dingin seperti cakram yang mengembang sekitar az mendekati 1 galaksi pembentuk bintang.

“Dalam makalah MEGAFLOW kami baru-baru ini, kami menyelidiki medium sirkumgalaksi dari galaksi jauh (z=0,7) dalam penyerapan dan, cukup spektakuler, juga dalam emisi.” Zabl menjelaskan.

Kesan seniman tentang angin galaksi yang didorong oleh lubang hitam supermasif yang terletak di pusat galaksi.  Energi intens yang berasal dari lubang hitam menciptakan aliran gas skala galaksi yang meniup materi antarbintang yang merupakan bahan pembentuk bintang.

ALMA (ESO / NAOJ / NRAO)

Kesan seniman tentang angin galaksi yang didorong oleh lubang hitam supermasif yang terletak di pusat galaksi. Energi intens yang berasal dari lubang hitam menciptakan aliran gas skala galaksi yang meniup materi antarbintang yang merupakan bahan pembentuk bintang.

Hasil penelitian Johannes Zabl dan rekan-rekannya tentang angin galaksi Ini telah dipublikasikan di jurnal Pemberitahuan Bulanan Royal Astronomical Society pada tanggal 28 Juli 2021 dengan judul Aliran dan Angin MusE GAs (MEGAFLOW) VIII. Penemuan halo emisi Mgii yang diselidiki oleh garis pandang quasar.

Laporan tersebut menjelaskan bahwa berkat posisi sempurna galaksi dan quasar dan penemuan pertukaran gas karena angin galaksi, para ilmuwan berhasil membuat peta. Peta ini memungkinkan pengamatan informasi pertama nebula secara bersamaan memancarkan dan menyerap magnesium — beberapa baryon alam semesta yang hilang — dengan galaksi Gal1.

READ  Apakah beberapa lubang cacing lubang hitam menyamar? Semburan sinar gamma dapat memberikan petunjuk.

Jenis nebula Materi normal ini diketahui di alam semesta dekat, tetapi keberadaannya untuk galaksi muda dalam formasi hanya dicurigai.

Dengan demikian, para ilmuwan telah menemukan beberapa baryon alam semesta yang hilang, membenarkan bahwa 80-90 persen materi normal berada di luar galaksi. Penemuan ini akan membantu memperluas model untuk evolusi galaksi di masa depan.


KONTEN YANG DIPROMOSI

Video Unggulan


Continue Reading

Ilmu

Bilangan Kuantum Magnetik Menurut Teori dan Penentuannya

Published

on

Ilustrasi Bilangan Kuantum Magnetik. Foto: Ist/Net

Bilangan kuantum magnetik mungkin terdengar asing. Bilangan kuantum adalah bilangan atau bilangan yang mewakili posisi elektron serta tingkat energi yaitu jarak dari inti atom, orientasi orbital, bentuk orbital, dan putaran elektron yang terdapat dalam model atom mekanika kuantum.

Orbital suatu atom memiliki 3 bilangan kuantum, yaitu bilangan kuantum utama (n), azimuth (l), dan magnetik (ml). Bilangan kuantum utama terdiri dari bilangan bulat positif yang dimulai dengan 1. Sedangkan azimuth dimulai dengan 0. Bagaimana dengan kuantum magnetik? Simak penjelasan berikut ini.

Baca Juga: Bilangan Kuantum Spin Apa Itu? Simak Penjelasannya Berikut Ini!

Arti Bilangan Kuantum Magnetik Untuk Pengetahuan

Dalam fisika atom, kuantum magnetik dilambangkan dengan huruf ml yang merupakan bilangan kuantum ketiga yang menggambarkan keadaan kuantum untuk sebuah elektron.

Nomor ini membedakan orbital yang ditemukan di subcircum. Biasanya berguna untuk menghitung komponen azimuth dari orientasi orbital dalam ruang.

Bilangan kuantum magnetik ini menggambarkan perilaku elektron dalam medan magnet. Dengan tidak adanya medan magnet, elektron dan orbital memiliki nilai n dan i yang serupa atau sama tetapi berbeda dalam m.

Namun, dengan adanya medan magnet, nilai ini dapat berubah. Ini karena interaksi antara medan magnet itu sendiri dan medan magnet di luar.

Selain itu, bilangan m ini ada karena momentum sudut elektron dan gerakan yang terkait dengan aliran listrik.

Elektron menjadi sejajar di daerah tertentu di sekitar nukleus karena interaksi.

Oleh karena itu daerah ini dikenal sebagai orbital. Jadi orientasi elektron di sekitar inti ditentukan oleh bilangan kuantum magnetik.

Jadi bilangan kuantum m ini adalah bilangan kuantum yang menunjukkan orientasi orbital dalam ruang tiga dimensi.

READ  Teori Stephen Hawking Tentang Lubang Hitam Telah Terbukti

Jika kulit atom adalah asrama bertingkat, sedangkan subkulit atom adalah lantai yang berisi kamar-kamar. Jadi ini menggambarkan distribusi elektron di kamar setiap lantai.

Baca Juga: Bilangan Kuantum Azimut Terkenal Dengan Keterkaitan Ilmu Matematika

Penentuan Jumlah Kuantum ml

Deskripsi bilangan kuantum magnetik seperti ini, dalam satu subkulit, nilai m akan bergantung pada nilai bilangan kuantum azimuth. Sedangkan untuk nilai tertentu (2l+1) nilai pembulatan m adalah -l, (-1+1),…., 0,…., (+l-1), +l.

Jika l = 0 maka m = 0 tetapi jika l = 1 maka ada tiga nilai m yaitu -1.0 dan -1. Begitu juga jika l = 2 maka ada 5 nilai m yaitu -2, -1, 0, +1 dan +2. Jumlah m akan menunjukkan jumlah orbital pada subkulit dengan nilai l dalam kondisi tertentu.

Bilangan kuantum azimuth terdiri dari bilangan bulat 0 sampai +-l sehingga nilai magnet pada setiap orbital berbeda. Jika orbital s, maka ml = 0. Hal ini karena pada orbital s, l = 0.

Namun, pada orbital d, karena l=2, nilai ml=-2,-1, 0, 1, dan 2. Di sini ditunjukkan bahwa angka berarti orientasi orbital.

Kuantum magnetik memiliki nilai dari -1 hingga 0 hingga +1. Jadi untuk setiap 1 bilangan kuantum orbital akan ada bilangan kuantum magnetik m1=(2l+1). Momentum sudut komponen x, Y dan Z, pada komponen x dan y memiliki besaran yang berubah-ubah. Namun, komponen Z tidak sewenang-wenang tetapi terkuantisasi.

Momentum Besar

Sedangkan besarnya momentum sudut elektron dipengaruhi oleh medan magnet, yaitu di luar B, jika medan luarnya sejajar dengan sumbu Z. Dengan demikian, nilai L pada arah Z memenuhi persamaan: Lz = mlh ….8.10 sehingga banyaknya ml untuk nilai l = 0, yaitu pada arah z ada satu nilai ml=0.

Nilai l=1 memiliki 3 nilai m yaitu -1,0,1 dan besarnya momentum sudut terhadap sumbu ZLZ untuk l=1 yaitu -, 0, +. Besarnya momentum sudut pada sumbu Z dapat dilihat sebagai berikut.

READ  Daftar asteroid terdekat dengan Bumi saat mendengar ledakan keras di Malang Raya

cos T 1 = maka nilai T1 = 45 o cos T2 == 0 maka nilai T2 = 90 0 cos T 3 = maka nilai T3 = 135 o. Sehingga besar momentum sudut dan arahnya serta bentuk lintasan orbit elektron pada jumlah orbital = 1. Gambarnya adalah ml = 1 L z = L = ml = 0 L z = 0 L = ml = – 1 L z = L = 45 o 90 o 135 o LLL ml = 0 ml = 1 ml = -1.

Putaran mekanika kuantum dari partikel tunggal membentuk medan magnet. Selain itu, rotasi dipengaruhi oleh dirinya sendiri. Seperti arus listrik, itu menyebabkan medan magnet feromagnetik permanen. Bilangan kuantum magnetik dapat menambah pengetahuan. (R10/HR Online)

Continue Reading

Ilmu

Apa Itu Makemake, Planet Kecil

Published

on

TRIBUNLAMPUNG.CO.ID – Apa itu Ingin? Baca penjelasannya.

Ketika kami di sekolah, kami mendapat materi pelajaran yang mengatakan Pluto adalah planet terakhir yang mengorbit matahari.

Para astronom kini telah menemukan planet lain yang terletak di sabuk kuiper, wilayah di luar orbit Neptrunus.

Planet kecil ini bernama Ingin.

Sabuk Kuiper adalah dunia yang dipenuhi ribuan miniatur dunia es dan berbatu, yang terbentuk pada awal sejarah tata surya sekitar 4,5 miliar tahun yang lalu.

Makemake adalah objek keempat yang diidentifikasi sebagai planet kerdil dan merupakan salah satu yang menyebabkan Pluto kehilangan statusnya sebagai planet.

Pembahasan tentang apa itu Makemake akan berkaitan dengan lenyapnya pluto sebagai planet ke-9.

Baca juga: Apa itu buku nonfiksi, berikut penjelasan lengkapnya

Sebelum para astronom mengetahui benda langit yang disebut Ingin (saat ini), Pluto dikenal sebagai planet kesembilan setelah Neptunus.

Namun, ketika para astronom menemukan benda langit tahun 2005 FY9 pada tahun 2005, benda itu kemudian dinamai Ingin pada tahun 2008, Pluto dikeluarkan dari kategori planet di Tata Surya kita.

A. Penemuan dan penamaan Ingin

Seperti dilansir dari situs resmi NASA, Ingin pertama kali ditemukan pada tanggal 31 Maret 2005 oleh tim astronom ME Brown, CA Trujillo dan D. Rabinowitz di Observatorium Palomar.

READ  Daftar asteroid terdekat dengan Bumi saat mendengar ledakan keras di Malang Raya
Continue Reading

Trending