Sudah hampir satu abad sejak para ilmuwan membuat terobosan di alam semesta.
Melalui perpaduan yang kompleks antara eksperimen dan teori, fisikawan telah merancang mesin yang dibangun di atas kemungkinan matematika yang jauh melampaui antarmuka realitas.
Ini disebut dalam istilah yang tidak jelas sebagai Interpretasi KopenhagenDibutuhkan teori dasar mekanika kuantum yang mengatakan bahwa segala sesuatu dapat digambarkan sebagai kemungkinan – sampai kita harus menggambarkannya sebagai fakta.
Tapi apa artinya ini?
Terlepas dari eksperimen dan filosofi selama beberapa dekade, kesenjangan antara sifat sistem kuantum yang tidak stabil dan pengukuran yang kita semua lihat dengan mata kepala sendiri hampir tidak menyempit. Untuk semua pembicaraan tentang runtuhnya bentuk gelombang, kucing dalam kotak, dan efek pengamat, kita tidak lebih dekat untuk memahami sifat realitas daripada fisikawan awal akhir 1920-an.
Namun, beberapa peneliti percaya bahwa petunjuk dapat ditemukan di ruang antara fisika kuantum dan teori besar lainnya yang lahir di awal abad ke-20.y Century – Teori relativitas umum Einstein yang terkenal.
tahun lalusekelompok kecil fisikawan dari University of Chicago berdebat tentang keberadaan lubang hitam di suatu tempat di dekatnya yang menarik tali massa dalam keadaan kuantum kabur dan memaksanya untuk memilih takdir.
Sekarang mereka kembali dengan harapan tindak lanjut, menawarkan pandangan mereka tentang berbagai jenis prospek, di muka cetak Tinjauan sejawat.
Bayangkan sepotong kecil materi muncul dari kegelapan di dalam kotak tertutup. Tak terlihat, itu di blur Mungkin. Ia tidak memiliki posisi tunggal dalam bayangan, tidak memiliki rotasi yang pasti, dan tidak memiliki momentum yang pasti. Yang terpenting, cahaya apa pun yang dipancarkannya juga jatuh pada spektrum kemungkinan yang tak terbatas.
Partikel ini beresonansi dengan potensinya dalam gelombang yang secara teoritis merambat hingga tak terbatas. Adalah mungkin untuk membandingkan spektrum kemungkinan ini dengan dirinya sendiri dengan cara yang sama seperti gelombang di permukaan kolam dapat terbelah dan bergabung kembali untuk membentuk pola interferensi yang dapat dikenali.
Namun setiap benturan dan dorongan di dalam riak-riak ini saat menyebar saling terkait satu sama lain, membatasi rentang kemungkinan yang terbuka baginya. Pola interferensi berubah dengan cara yang ditandai, membatasi hasil pada proses yang digambarkan fisikawan sebagai hilangnya koherensi, atau dekoherensi.
Ini adalah proses yang dipertimbangkan fisikawan Dane Danielson, Gautam Satishchandran, dan Robert Wald dalam eksperimen pemikiran yang akan mengarah pada paradoks yang menarik.
Seorang fisikawan yang mengintip ke dalam kotak untuk mendeteksi cahaya yang dipancarkan oleh sebuah partikel pasti akan menjerat sekelilingnya dengan gelombang partikel tersembunyi, menyebabkan tingkat dekoherensi tertentu.
Tetapi bagaimana jika orang lain menoleh ke belakang dan menangkap cahaya yang dipancarkan oleh partikel dengan matanya? Demikian pula, dengan menjerat diri mereka sendiri dengan cahaya yang dipancarkan oleh partikel, mereka akan membatasi kemungkinan ini di dalam gelombang partikel, mendistorsinya lebih jauh.
Dan jika pengamat kedua berdiri di planet yang jauh, bertahun-tahun cahaya, mengintip ke dalam peti melalui teleskop? Di sinilah menjadi aneh.
Meskipun butuh waktu bertahun-tahun untuk riak elektromagnetik untuk keluar dari kotak, pengamat kedua masih menjerat partikel. Menurut teori kuantum, ini juga akan menyebabkan perubahan nyata pada gelombang partikel, sesuatu yang mungkin telah diperhatikan oleh pengamat pertama jauh sebelum seorang kolega di dunia yang jauh mulai membangun teleskopnya.
Tapi bagaimana jika pengamat kedua menghilang jauh ke dalam lubang hitam? Cahaya dari kotak mungkin dengan mudah menyelinap melalui cakrawalanya, jatuh ke jurang ruangwaktu yang bengkok, tetapi menurut aturan relativitas umum, tidak ada informasi tentang nasibnya yang saling terkait dengan pengamat kedua yang dapat merembes masuk.
Entah apa yang kita ketahui tentang fisika kuantum salah, atau kita memiliki beberapa masalah serius yang harus diselesaikan dengan relativitas umum.
atau, berdasarkan Danielson, Satishchandran dan Wald, pengamat kedua kami yang tidak berhubungan. Garis tidak bisa kembali di sekitar lubang hitam, yang dikenal sebagai cakrawala peristiwa, bertindak sebagai pengamat itu sendiri, yang pada akhirnya mengarah ke dekoherensi, hampir semuanya. Seperti gerombolan mata raksasa melintasi alam semesta, menyaksikan alam semesta terbentang.
merayap belum? Ini semakin buruk.
Lubang hitam bukan satu-satunya fenomena di mana ruang-waktu membentang menjadi jalan satu arah. Objek apa pun yang cukup dipercepat mendekati kecepatan cahaya, pada kenyataannya, pada akhirnya akan mengalami semacam cakrawala di mana informasi yang dipancarkannya tidak dapat dikembalikan.
Menurut sebuah studi baru-baru ini oleh ketiganya, ini “Rindler HorizonsItu juga dapat menghasilkan jenis dekoherensi serupa dalam keadaan kuantum.
Ini tidak berarti bahwa alam semesta sadar dengan cara apa pun. Alih-alih, kesimpulannya dapat mengarah pada teori objektif tentang bagaimana keadaan kuantum menyelesaikan pengukuran absolut, dan mungkin di mana fisika gravitasi dan kuantum bertemu untuk menjadi satu teori fisika yang komprehensif.
Alam semesta masih rusak, setidaknya untuk saat ini.
Yang bisa kami katakan adalah memperhatikan ruang ini.
Penelitian ini telah dipublikasikan di arXiv.